

dher's Etature _____ Stature 13 14 15 16 17 16 19 2

STATUR

STATURE

3rd International Conference on Nutrition & Growth

Vienna, Austria, March 17-19, 2016

www.kenes.com/nutrition-growth

Abstract Book

Table of Contents

Welcome	2
Committees	3
General Information	4
Information for Presenters	7
Daily Poster Topics and Board Numbers	
CME/CPD Accreditation	9
Networking Events	12
Venue Floorplans	13
Timetable at a Glance	14

Scientific Program

Thursday, March 17	17	
Friday, March 18	25	
Saturday, March 19	33	

Posters

Friday, March 18	47
Saturday, March 19	_71

Index	93

Recognition, Acknowledgements and Commercial Support

113
115
120
121
122

Committees

Chairpersons and Organizing Committee

Moshe Phillip, Israel Raanan Shamir, Israel Dominique Turck, France

Advisory Board

Carlo Agostoni, Italy Faisal Ahmed, UK Christophe Dupont, France Mary Fewtrell, UK Kim Fleischer Michaelsen, Denmark Almuthe Hauer, Austria Gabrielle Hausler, Australia Jan Lebl, Czech Republic Andrew Prentice, UK Lars Savendahl, Sweden Virginia Stallings, USA Hania Szajewska, Poland Hans Van Goudoever, The Netherlands Jan-Maarten Wit, The Netherlands

General Information

Conference Venue

Reed Messe Wien GmbH Congress Center Messeplatz 1 Vienna, Austria T: +43 1 727 20-0 F: +43 1 727 20-2359 E: congress@messe.at

Language

English is the official language of the Conference.

Registration

 Desks will operate as follows:

 Thursday, March 17
 10:00 – 20:15

 Friday, March 18
 07:30 - 19:15

 Saturday, March 19
 07:30 - 16:45

Name Badge

Upon registration you will receive your name badge. Please wear your badge during the Conference in order to access the session halls and Exhibition Area.

Clothing

Attire, throughout the Conference, is casual and informal.

Mobile Application

Install the N&G 2016 interactive Mobile App on your smartphone and portable devices to access all of the information you could need during and after the Conference.

- See the overview of sessions, speakers and exhibitors
- Create your own program for the event, including bookmarking the sessions you wish to attend
- Receive real-time updates

Download the N&G 2016 App now to enhance your Conference experience!

(Available on the App Store or Google Play.)

Neonatal & Prematurity

169 OXIDATION-REDUCTION POTENTIAL IN THE MILK FROM MOTHERS OF PRETERM INFANTS

<u>S. Spasić</u>¹, S. Miletić¹, S. Minić², N. Lugonja¹, V. Marinković³, I. Spasojević⁴, M. Vrvić² ¹Institute of Chemistry- Technology and Metallurgy, Department of Chemistry, Belgrade, Serbia

²Faculty of Chemistry- University of Belgrade, Department of Biochemistry, Belgrade, Serbia
 ³University Children's Hospital, Neonatology Department, Belgrade, Serbia
 ⁴Institute for Biological Research "Sinisa Stankovic", Department of biochemistry, Belgrade, Serbia

Background and Aims

Health benefits of mother's milk depend on the level of the total antioxidant capacity (TAC). In mother's milk, the TAC should refer to the sum of activities derived from active enzymatic antioxidant systems (e.g. superoxide dismutase, catalase, glutathione peroxidase etc.), non-enzymatic antioxidants, such as vitamins C and E, and the presence of other bioactive factors (e.g. lactoferrin, uric acid etc.). Measuring oxidation-reduction potential (ORP) using RedoxSYS Analyzer may be an alternative to classic methods of measuring TAC.

We compared the results of OPR and ascorbic acid content in milk from mothers of preterm infants.

Method

Milk was obtained from ten mothers of preterm infants (gestational age 28-36 weeks; birth weight 900-2,470 g). Milk samples were obtained within the first 4 days after delivery (colostrum), from day 4 to two weeks (transient), and 6 weeks and later (mature milk). Static oxidation–reduction potential (ORP) of milk from mothers of preterm infants was measured using RedoxSYS Analyzer (Luoxis Diagnostics, Englewood, CO). Ascorbic acid content was measured in milk samples and results were expressed as mg/l. Procedure suggested by the manufacturer was used (Reflect quant® ascorbic acid test for reflectometerRQflex®, Merck KGaA, Germany, 2006).

Results

There are similarities in the results of OPR and vitamin C concentration in colostrum, transient and mature milk from mothers of preterm infants.

Conclusion

Vitamin C concentration influenced the value of OPR most.

This work was supported by Grants 173014 and 43004 by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

OXIDATION-REDUCTION POTENTIAL IN THE MILK FROM MOTHERS OF PRETERM INFANTS

S. Spasić^{1*}, S. Miletić¹, S. Minić², N. Lugonja¹, V. Marinković³, I. Spasojević⁴, M.M.Vrvić²

CH

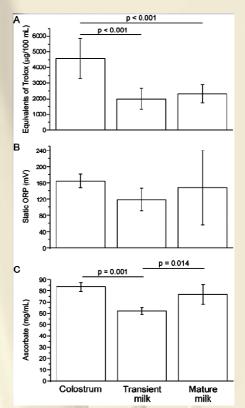
¹Institute of Chemistry, Technology and Metallurgy, Belgrade, Serbia ²Faculty of Chemistry, University of Belgrade, Serbia ³Neonatology Department, University Children's Hospital, Belgrade

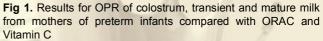
⁴Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia

*Institute of Chemistry, Technology and Metallurgy, Belgrade 11000, Njegoseva 12, Serbia; svujin@chem.bg.ac.rs; +381 11 2637273

Health benefits of mother's milk depend on the level of the total antioxidant capacity (TAC). In mother's milk, the TAC should refer to the sum of activities derived from active enzymatic antioxidant systems (e.g. superoxide dismutase, catalase, glutathione peroxidase etc.), non-enzymatic antioxidants, such as vitamins C and E, and the presence of other bioactive factors (e.g. lactoferrin, uric acid etc.). Measuring oxidation-reduction potential (ORP) using RedoxSYS Analyzer may be an alternative to classic methods of measuring TAC.

Aim


We compared the results of OPR and ascorbic acid content in milk from mothers of preterm infants.


Methods

Milk was obtained from ten mothers of preterm infants (gestational age 28-36 weeks; birth weight 900-2,470 g). Milk samples were obtained within the first 4 days after delivery (colostrum), from day 4 to two weeks (transient), and 6 weeks and later (mature milk). Static oxidation-reduction potential (ORP) of milk from mothers of preterm infants was measured using RedoxSYS Analyzer (Luoxis Diagnostics, Englewood, CO). Ascorbic acid content was measured in milk samples and results were expressed as mg/l. Procedure suggested by the manufacturer was used (Reflect quant® ascorbic acid test for reflectometerRQflex®, Merck KGaA, Germany, 2006).

Results and conclusion

There are similarities in the results of OPR and vitamin C concentration in colostrum, transient and mature milk from mothers of preterm infants. Vitamin C concentration influenced the value of OPR most.

	Milk	Skim	Whey	
Colostrum	7015	6867	5620	
Transient milk	4764	3983	3387	
Mature milk	4317	3685	3350	

Table 1. Table 1 ORAC values expresed as vitamin C mg/L

Acknowledgments

This work was supported by Grants 173014 and 43004 by the Ministry of Education, Science and Technological Development of the Republic of Serbia.