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Abstract

Aripiprazole and ziprasidone are atypical antipsychotic drugs with the effect

on positive and negative symptoms of schizophrenia, mania, and mixed

states of bipolar disorder. Hansen's solubility parameters, δd, δp, and δh,

which account for dispersive, polarizable, and hydrogen bonding contribu-

tions to the overall cohesive energy of a compound, are often used to assess

pharmacokinetic properties of drugs. However, no data exist of solubility

parameters for the drugs of interest in this study. Therefore, in the present

study, partial least square regression (PLS), artificial neural networks

(ANNs), regression trees (RT), boosted trees (BT), and random forests (RF)

were applied to estimate Hansen's solubility parameters of ziprasidone,

aripiprazole, and their impurities/metabolic derivatives, targeting their

biopharmaceutical classes and absorption routes. A training set of 47 struc-

turally diverse and pharmacologically active compounds and 290 molecular

descriptors and pharmaceutically important properties were used to build

the prediction models. The modeling approaches were compared by the

sum of ranking differences, using the consensus values as a reference for

the unknowns and the experimentally determined values as a gold standard

for the calibration set. In both instances, the PLS models, together with

ANNs, demonstrated better performance than RT, BT and especially RF.

Based on the best scored models, we were able to pinpoint the most probable

absorption sites for each drug and the corresponding metabolite, i.e., the

upper parts of the gastrointestinal tract, small intestine, or absorption along

entire length of gastrointestinal tract.
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1 | INTRODUCTION

Aripiprazole and ziprasidone are piperazine derivatives, atypical antipsychotic drugs with an effect on positive and
negative symptoms of schizophrenia, mania, and mixed state of bipolar disorder.1 Interesting pharmacological profile
of investigated compounds is associated with their binding to serotonin and dopamine receptors.2-5 Orally administered
ziprasidone of 80 to 160 mg/day with the food was a clinically valuable treatment option for stable patients with
schizophrenia or schizoaffective disorder, who experienced suboptimal efficacy or poor tolerability with haloperidol,
olanzapine, or risperidone.2 Also, the oral rout of aripiprazole shows effective and safe characteristics with patients
who are nonresponsive to standard antidepressants.1

In the case of oral rout of administration, the delivery by the bloodstream to the site of action is related to the process
of absorption of the drug in the gastrointestinal tract (GIT), and in this case, it may result in lesser availability and
bloodstream concentration fluctuations, due to incomplete absorption. When a tablet or capsule is swallowed, it must
dissolve before it can be absorbed. Highly water‐soluble medications dissolve more readily in the GIT, while the fat‐
soluble drugs dissolve slower. Tablets that dissolve too early are problematic, because they give bad taste and are difficult
to swallow. Special formulations or coatings can be used to delay dissolution, thereby protecting the drug from stomach
acid, or allowing gradual release of the drug to intentionally lengthen the absorption process. These are referred to as the
delayed or sustained release formulations.6

With an aim to predict the in vivo pharmacokinetic properties of drugs, the Food and Drug Administration set up the
Biopharmaceutical Classification System (BSC), which is based on measuring permeability and solubility. Biopharma-
ceutical Classification System classifies drugs into 4 classes and 2 groups7. Class 1 is high solubility and high permeabil-
ity, Class 2 is low solubility and low permeability, Class 3 is high solubility and low permeability, and Class 4 is low
solubility and low permeability. Group 1 belongs to Class 1, which includes drugs that rapid absorb along the first part
of jejunum. Contrary to Class 1, Group 2 can belong to Classes 2 to 4, characterizing with an incomplete absorption
when passing GIT.7

When considering the physicochemical characteristics of the drugs, an important impact on the absorption process is
exerted by the potential of the H‐bond formation.8,9 When the molecule of a drug passes through the membranes, it has
to disrupt hydrogen bonds with its aqueous environment. Building strong H‐bonds requires more energy, and
consequently, more energy is then needed for their disruption. Thus, high capacity of building the H‐bond connections
is not a desired property, and it is often associated with poor permeability and poor absorption.10 By calculating the
Hansen's solubility parameters of the investigated compounds based on the H‐bond potential (δh) and the δv parameter
(a combined influence of the dispersive [δd] and polar forces [δp]), it is possible to determine location and duration of the
absorption process in GIT.8,11-13

According to the BSC criteria, ziprasidone14 and aripiprazole15 belong to Class 27,16 and Group 2, while for their
impurities, there are no data available in the literature (Figure 1). In the finished formulation (tablet) taken by the
patients, one can find the impurities of the production and degradation process.

Instability of ziprasidone is almost a consequence of reactivity of the alpha position of the benzoxindol moiety
in the molecule of ziprasidone. The methylene moiety next to the lactam carbonyl is susceptible to nucleophiles,
and it can easily form an oxidative degradant (Imp Z2; Figure 1). Imp Z2 can be involved in the reaction of aldol
condensation with the molecule of ziprasidone, when a new degradant is formed17 (Imp Z3; Figure 1). A degradant
that is formed at ambient temperature under the influence of the daylight in the solid‐state ziprasidone is a
product of the side reaction of benzisothiazole at the alpha position of the benzoxindol moiety of ziprasidone (Imp Z5;
Figure 1). Imp Z6 is the dehydration product of Imp Z3, while Imp Z7 is the result of the opening of the
benzisothiazole ring.

Aripiprazole is synthesized by coupling 1‐(2,3‐dichlorophenyl)‐piperazine or its derivative with the compounds that
could be regarded as 7‐derivatives of 3,4‐dihydroquinolin‐2(1H)‐one. The synthetic route and the type of substituent at
position 7 of 3,4 dihydroquinolon‐2(1H)‐one allow formation of several structurally related impurities such, as Imp
A1, Imp A2, Imp A3, and Imp A4. Depending on the reaction conditions applied in the course of the synthesis, the
additional side reactions can occur and the consecutive byproduct impurities can be expected, including Imp A5, Imp
A6 and Imp A7, and the degradant Imp A8 (Figure 1).18

The preliminary studies have shown that piperazine derivatives that include aripiprazole and ziprasidone are the
compounds that can be absorbed from the GIT.19 However, no data exist suggesting from which part of the GIT the main
components and especially their impurities and the degradation products are absorbed. Within the scope of the present
study, a series of such impurities have been targeted. For the investigated compounds, there are also no data available of

2 of 12 OBRADOVIĆ ET AL.



the Hansen's solubility parameters. The aim of the present study was to estimate the Hansen's solubility parameters of
aripiprazole, ziprasidone, and their impurities and to pinpoint the most probable sites of their absorption.

2 | METHODS

2.1 | Selection of the training compounds set, structural optimization, and computation of
molecular descriptors

The training set was composed of 47 carefully selected and pharmaceutically important substances (Table 1) of various
molecular shapes, sizes, and abilities to establish specific interactions (the hydrogen bond donating, the hydrogen‐bond
accepting, dipolar, and polarizable interactions). Absorption from different parts of GIT has been entirely covered by the
training set. All molecular structures were built by using Maestro (Maestro, version 10.7, Schrödinger, LLC, New York,
2016). Calculations of physically significant molecular descriptors and pharmaceutically relevant properties were
performed by using QikProp (QikProp, version 4.9, Schrödinger, LLC, New York, 2016). The single point calculations
using the RM1 method from the semiempirical neglect of diatomic differential overlap module of Schrodinger Suite
2016‐3 (semiempirical neglect of diatomic differential overlap driver, version 3.5, Schrödinger, LLC, New York, 2016)
were performed with semiempirical parameters. In total, 298 2D molecular descriptors were calculated; 198 reflecting
molecular topology, size, branching, and shape such as valence connectivity indices (χ 0‐5), Gutman, Zagreb, and Wiener
topological indices; 27 physicochemical properties, such as human oral absorption, variously estimated octanol‐water
partition coefficients, solvent accessible surface area, and hydrogen bond donating and accepting properties; and 26
descriptors obtained from molecular‐orbital computations, e.g., total energy, ionization potential, core‐core repulsion,
dipole, and electron affinity. The rest of the descriptors were related to different structural or physicochemical properties.
The calculated descriptors are given in the Supporting Information (Data sheets 1). The new machine‐learning applica-
tion (AutoQSAR) for the validation and deployment of the QSAR models built in Schrödinger was tested in 2

FIGURE 1 Structures of the target molecules: aripiprazole, ziprasidone, and their impurities
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independent runs. The tool has becoming increasingly popular in molecular modeling community, especially among
those not specialized in statistical modeling. It should provide reliable predictions by combining robust linear modeling,
cross‐validation, validation, ranking, and selection of the best models among many linear models obtained by variations
of partial least square regression (PLS) and multiple linear regression. Naturally, we were highly motivated to include the
AutoQSAR in the present study.

The reference values of Hansen solubility parameters are taken from the literature12,20 and are included in Table 1,
along with the estimation and determination methods. Practically, experimentally obtained data were provided only in
the case of ibuprofen and ibuprofen lysinate, using the extended Hansen's solubility approach and the inverse gas
chromatography, respectively.20 For the rest of compounds, the values are obtained by a reliable fragmentation
method.12 The values of the Hansen's solubility parameters are also given in the Supporting Information (Data sheets 1).

2.2 | Building the models

Partial least square regression, artificial neural networks (ANNs), regression trees (RTs), random forests (RFs), and
boosted trees (BTs) were used for modeling of the Hansen's solubility parameters. Compounds were randomly divided
into the training (n = 36) and the test set (n = 11). Depending on the regression method, the training set was further split
into several cross‐validation subsets (in the case of PLS and RT), or the single validation set was randomly selected

TABLE 1 Compound training set

No. Compound δd δp δh Method Ref. No. Compound δd δp δh Method Ref.

1 Acetaminophen 21.13 8.62 15.61 CGM 13 25 Indomethacin 23.06 5.98 9.42 CGM 13

2 Acyclovir 21.80 14.64 24.06 CGM 13 26 Ipsapirone 21.00 7.86 11.31 CGM 13

3 Allopurinol 25.63 23.68 25.19 CGM 13 27 Isosorbide‐mononitrate 20.87 13.37 17.00 CGM 13

4 Amoxicillin 23.13 7.38 15.65 CGM 13 28 Levodopa 22.34 6.26 21.86 CGM 13

5 Ampicillin 21.98 6.69 11.70 CGM 13 29 Metacycline 25.61 8.84 22.66 CGM 13

6 Betamethasone 20.50 5.63 16.18 CGM 13 30 Methaqualone 21.62 7.34 8.01 CGM 13

7 Cyclosporine 18.83 3.25 14.10 CGM 13 31 Metoprolol 18.31 3.68 11.52 CGM 13

8 Ciprofloxacin 22.66 7.30 10.97 CGM 13 32 Metronidazole 19.86 13.94 16.86 CGM 13

9 Digitoxin 20.73 3.69 17.61 CGM 13 33 Nifedipine 19.61 5.15 8.59 CGM 13

10 Dicoumarol 26.25 5.57 17.83 CGM 13 34 Nitrofurantoin 22.14 15.45 16.64 CGM 13

11 Dilazep 19.79 3.97 9.81 CGM 13 35 Nimodipine 19.00 4.36 8.30 CGM 13

12 Diltiazem 20.44 4.86 8.40 CGM 13 36 Nisoldipine 19.00 4.31 7.87 CGM 13

13 Doxycycline 24.70 8.49 22.20 CGM 13 37 Oxytetracycline 25.85 9.08 24.64 CGM 13

14 Erythromycin 18.09 3.35 15.65 CGM 13 38 Oxprenolol 18.32 3.87 11.34 CGM 13

15 Phenylbutazone 20.91 6.41 9.85 CGM 13 39 Piretanide 22.48 6.75 12.18 CGM 13

16 Phenytoin 22.80 6.69 7.74 CGM 13 40 Pyridoxal‐5‐phosphate 24.79 19.47 16.97 CGM 13

17 Phenoxymethylpenicillin 21.61 6.54 10.05 CGM 13 41 Propranolol 19.57 3.35 11.04 CGM 13

18 Furosemide 23.83 8.00 13.35 CGM 13 42 Prednisolone 20.63 5.59 16.65 CGM 13

19 Glibenclamide 21.44 5.29 8.87 CGM 13 43 Riboflavin 23.75 9.65 22.25 CGM 13

20 Hydrochlorothiazide 23.86 10.07 13.82 CGM 13 44 Sulfametoxydiazine 21.70 9.50 13.55 CGM 13

21 Quinidine 20.72 5.53 11.97 CGM 13 45 Theophylline 17.80 12.85 12.65 CGM 13

22 Chloramphenicol 23.06 9.50 18.68 CGM 13 46 Tetracycline 24.99 8.53 22.25 CGM 13

23 Ibuprofen 16.60 6.91 9.97 EHSA 21 47 Sulfinpyrazone 23.44 7.30 10.79 CGM 13

24 Ibuprofen lysinate 16.97 22.75 12.83 IGC 21

The reference values of Hansen's solubility parameters were retrieved from Terada and Marchessault and Hansen.12,20 Hansen's solubility parameter values for

ibuprofen and ibuprofen lysinate were determined by extended Hansen solubility approach (EHSA) and inversion gas chromatography (IGC), respectively. For
the rest of compounds, contribution group method (CGM) was used for estimation.
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(n = 8, in the case of ANN‐s, BT, and RF). The validation/cross‐validation subsets were used to find the optimal complex-
ity of the models, while the test set was used for an assessment of their prediction abilities. The root mean squared errors
and R2 values of the calibration (cal), validation/cross‐validation (val/cv), and prediction (pred) points were used to
assess the models' performances.

Prior to any modeling, categorical and ordinal variables, as well as molecular descriptors with low variability (relative
standard deviation <10%), were removed from the dataset. In this way, the starting pool of 296 descriptors was initially
reduced to 218 variables. To improve model performances, an additional variable selection was performed, if and when
necessary.

Partial least square regression was carried out on the standardized data (mean centered and divided by standard
deviation), using the SIMPLS algorithm (PLS Tool Box v. 7.02 for MATLAB R2011). The models of optimal complexity
(number of latent variables) were selected, based on the cross‐validation experiments with 5 or 4 splits of the training set
by the venetian‐blind resampling. An abnormal behavior of the cross‐validation error versus the number of the PLS
components was a strong indicator of the presence of influential points. After removal of the outliers, the models were
further improved by the stepwise variable selection. All variables with the variable importance to the projection scores
higher than 1 were retained. The procedure was repeated, until no improvement in the model performance was
achieved.

The data without any pretreatment were used to build the ANN models. The feed‐forward multiple perceptron layer
(MLP) networks were employed, with the Broyden‐Fletcher‐Goldfarb‐Shanno learning algorithm. The network training
was done by applying the self‐training function as a part of Statistica 10.0 software (StatSoft Inc.). The number of
perceptrons in the hidden layer was determined by trial and error, although the predefined range was set to n = 8 to
25, following the rule n = N1/2 + 10, where N is the number of the descriptors involved in training. Basically, the
networks of optimal architecture (topology) were selected of 100 networks trained per each Hansen parameter. Such a
high number of trained networks, with random values of initial parameters, were used to achieve global model
optimum and avoid local ones. The following activation functions were varied during network construction: identity
(ident), exponential (exp), logistic (log), and hyperbolic tangent (tanh). Each of the developed networks was internally
and externally validated by using randomly selected subsets of compounds. Mean squared residual error was used as a
performance function. Also, architectures with highest determination coefficient for training and validation were
selected as the final ones (the best 5). Practically, internal and external validations were necessary to avoid the problem
of overfitting. For that purpose, the complete set of compounds was divided into approximately 60% of training and 20%
of each—internal and external validation subsets. In that way, compounds 2, 16, 17, 26, 32, 35, 37, and 42 were
randomly selected as internal validation set, while the prediction performance of ANNs was assessed by randomly
selected external set of compounds: 5, 8, 13, 14, 19, 22, 23, 31, 36, and 38. The rest of the compounds were used for
calibration (training).

The RT models were built by using (a) single trees, here denoted plainly as the RTs, (b) BTs, and (c) RFs, all parts of
the tree/partitioning modules in Statistica 10.0 (StatSoft Inc.). In the case of RT, for each solubility, parameters about 12
to 16 trees of different sizes were built. The trees of the maximum size were pruned on variance, with 5 objects in the
final nodes used as the stopping criteria. The 10‐fold cross‐validation was used to select the tree of optimal complexity.
The minimum of the cross‐validation cost function (a sort of trade‐off between the tree size and the prediction error) was
used as a criterion.

In the case of the RF models, the number of trees in ensembles was in between 70 and 100. The stopping criteria for
the tree selections were the maximum size of 100, the minimum number of cases in the child and terminal nodes n = 5,
and the maximum number of levels l = 4. The stopping criteria for boosting trees were a bit stricter, with the maximum
number of nodes n = 3, to produce small, weak learners able to perform boosting through the modeling of the residual
error of a preceding tree.

2.3 | Sum of ranking differences

Sum of ranking difference (SRD) has recently emerged as a robust nonparametric method for a comparison of the
methods, models,21-23 and fusion of multiple criteria.24-27 The method is entirely general. Sum of ranking difference
requires the data to be arranged in a matrix in such a way that the methods or models to be compared are placed in
columns, while the objects (in this case, the compounds) are arranged in the rows. Then, a reference column is added
to the matrix. It can be the row‐wise maxima, minima, the average, or the golden reference standard vector. Here, 2
kinds of the SRD analysis were performed, one using the row‐wise average of the experimentally determined Hansen's
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solubility parameters (in the case of the standard set of compounds), and the second the row‐wise average (in the case
of the compounds with unknown experimental values). Then, for each column, the values are ranked in an ascending
order by using the arithmetic mean for the tied values, and the ranks are subtracted from the reference. The rank
differences are summed up resulting in SRD score associated with each column. In the case when the results of
multiple SRDs are to be compared, the SRD scores of each analysis are rescaled to the maximum value (SRDnorm),
according to Equation 1.

SRDnorm ¼ 100 × SRD=SRDmax (1)

The smaller the SRD scores, the closer the model to the reference. The results of the SRD analysis can be validated in
2 ways, and in this study, only the randomization test was used. The purpose of the test is to distinguish statistically
significant SRD values from the random ones. Random distribution of the SRD scores is produced, and if the SRD score
falls within the 90% confidence limits of the bell‐shaped random distribution curve, then the model is not able to rank
the objects (compounds) better than by chance, implying that the results of such model are statistically insignificant
(random), compared with the reference (cf. to the Figure 3A‐C lower subplots).

The SRD toolkit was provided in a form of the Microsoft Excel visual basic macros freely available from http://aki.ttk.
mta.hu/srd/.

2.4 | Classification of the absorption sites of target drugs based on Hansen's solubility
approach

Classification of the absorption sites of the drugs based on the Hansen's solubility approach is related to the cohesive
energy density (CED) method.28 The term “solubility parameter” was first used by Hildebrand and Scott.29 Hildebrand
described the total solubility parameter (δt) of the nonpolar substances as the square root of CED:

δt ¼ CED1=2 ¼ ΔE=Vmð Þ1=2 (2)

where ΔE represents the liquid cohesion energy, which is divided by the molar volume, Vm (cm3 mol−1)9.
Hansen extended application of this concept to the polar systems, where the total cohesion energy, E, is the sum of

individual energies that make it up:

E ¼ Ed þ Ep þ Eh (3)

Dividing E by the molar volume of a compound of interest (Vm) results in the square of the total solubility parameter
(δt

2), which is the sum of the squares of the Hansen's components, δd, δp, and δh:

E=Vm ¼ Ed=Vm þ Ep=Vm þ Eh=Vm (4)

δt2 ¼ δd2 þ δp2 þ δh2 (5)

where δd, δp, and δh describe the dispersive, the dipole, and the hydrogen bonding interactions, respectively.29

Bagley performed a projection of the 3‐dimensional solubility parameter space onto the 2‐dimensional plot
characterized by the association interaction of the dispersion and the polarization forces, and he introduced the
volume‐dependent solubility parameter, δv, defined by the following equation8:

δv ¼ δd2 þ δp2
� �½

(6)

Transfer of the calculated 3‐dimensional solubility parameters into the Bagley diagram classifies gastrointestinal
absorption sites according to the following criteria: Group 1, drugs that are only absorbed from the upper parts of the
GIT, with the shortest absorption time (δh > 17 [J/cm3]½); Group 2, drugs that are preferably absorbed from the upper
parts of the small intestine but to a lower extent from the other sites also; Group 3, drugs with the longest absorption
time that are absorbed from along the whole GIT, or even better from cecum or colon than from small intestine
(δv = 20 ± 2.5 [J/cm3]½, δh = 11 ± 3 [J/cm3]½).12,30
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3 | RESULTS AND DISCUSSION

3.1 | Predictive performance of models and nonparametric model selection

Generally, the PLS and ANN models showed somewhat better performance compared with RTs, BTs, or RFs, with
R2pred values ranging between 0.75 and 0.95, versus R2pred for BTs 0.40 to 0.50 (Table 2). In the case of δd, the BT model
was obtained with extremely poor predictability R2pred = 0.01, but with good calibration performance. The prediction
parameters remain in agreement with the ANN models already published in the literature.31,32 Járvás et al32 obtained
the ANN models based on 14σ COSMO moments with the mean absolute errors of 1.09, 1.70, and 1.96 for δd, δp, and

TABLE 2 Statistical performance parameters of the obtained models

Models

Statistics, Model
Complexity, and Other
Details

Hansen's Solubility Parameter

δd δp δh

PLS RMSE (cal; CV; pred) 0.30; 0.83; 0.91 0.84; 1.58; 1.08 1.71, 2.23, 2.05
R2 (cal; CV; pred) 0.978; 0.833; 0.896 0.931; 0.756; 0.771 0.892, 0.810; 0.752;
Complexity n(LV) = 5 n(LV) = 3 n(LV) = 2
Excluded compounds 7, 10, 40, 45 23, 24, 40 8, 10, 22, 45

ANN1 RMSE (cal; val; pred) 0.11; 0.46; 1.19 <0.01; 0.42; 0.62 0.37; 2.27; 2.85
R2 (cal; val; pred) 0.977; 0.880; 0.802; 1.000; 0.970; 0.878 0.984; 0.956; 0.831
Complexity and structure (210‐16‐1), log‐log (211‐14‐1), log‐ident (211‐18‐1), tanh‐log
Excluded compounds 10, 25, 45 23, 24, 48 10

ANN2 RMSE (cal; val; pred) 0.02; 0.36; 0.42 <0.01; 0.50; 0.41 0.27; 2.36; 3.96
R2 (cal; val; pred) 0.996; 0.914; 0.940 1.000; 0.976; 0.907 0.988; 0.956; 0.764
Complexity and structure (210‐14‐1), log‐log (211‐14‐1), exp‐ident (211‐20‐1), log‐log
Excluded compounds 10, 25, 45 23, 24, 48 10

ANN3 RMSE (cal; val; pred) 0.11; 0.52; 0.72 <0.01; 0.33; 0.51 0.37; 2.35; 2.50
R2 (cal; val; pred) 0.983; 0.877; 0.890 1.000; 0.965; 0.928 0.984; 0.960; 0.856
Complexity and structure (210‐14‐1), exp‐log (211‐14‐1), exp‐ident (211‐15‐1), tanh‐tanh
Excluded compounds 10, 25, 45 23, 24, 48 10

ANN4 RMSE (cal; val; pred) 0.04; 0.39; 0.88 <0.01; 0.35; 0.58 0.21; 2.54; 3.47
R2 (cal; val; pred) 0.991; 0.896; 869; 1.000; 0.976; 0.890 0.991; 0.963; 0.789
Complexity and structure (210‐14‐1), log‐log (211‐14‐1), exp‐tanh (211‐23‐1), log‐log
Excluded compounds 10, 25, 45 23, 24, 48 10

ANN5 RMSE (cal; val; pred) 0.15; 0.57; 1.09 0.03; 0.71; 0.58 0.01; 1.96; 1.89
R2 (cal; val; pred) 0.968; 0.865; 0.824 0.999; 0.965; 0.856 1.000; 0.967; 0.891
Complexity and structure (210‐14‐1), log‐log (211‐14‐1), exp‐tanh (211‐14‐1), tanh‐log
Excluded compounds 10, 25, 45 23, 24, 48 10

RT RMSE (cal) 1.22 2.83 3.27
R2 (cal) 0.747 0.640 0.510
Complexity TS = 3; cost cut‐off = 5.23 TS = 2; cost cut‐off = 12.51 TS = 2; cost cut‐off = 18.48
Excluded compounds 16, 32, 36 1 2, 19, 20, 37, 44

BT RMSE (cal; pred) 0.625; 2.58 1.421; 2.230 1.284; 4.34
R2 (cal; pred) 0.941; 0.08 0.940; 0.522 0.931; 0.420
Complexity NT = 187, TS = 5; NT = 70, TS = 3 NT = 192, TS = 4
Excluded compounds 16, 32, 36 1 2, 19, 20, 37, 44

RF RMSE (cal; pred) 2.15; 2.37 5.01; 3.04 4.16; 3.03
R2 (cal; pred) 0.587; 0.193 0.551; 0.521 0.387; 0.420
Complexity NT = 70; NT = 100 NT = 100
Excluded compounds 16, 32, 36 1 2, 19, 20, 37, 44

The artificial neural network (ANN) structure is given as i‐h‐o, where i, h, and o are numbers of input, hidden, and output neurons, followed by the activation
function in hidden and output layers (logistic, tanh, exponential, and identity); regression tree (RT) structure is described by tree size (TS); boosted tree model
structure is defined by number of trees (NT) and TS; random forest complexity is described by NT included in the model; for stopping conditions and TS, see
section 2.2.
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δh, respectively. In our case, the lowest errors were 0.42, 0.41, and 1.89. In all cases, a removal of small number of
compounds (1 < n < 5) from the training set significantly improved the performance of the models. A consistency in
the compound outlying effect is observed with each Hansen's solubility parameter, although we could not find a
reasonable structural or physicochemical explanation for such a behavior of the compounds considered. The remaining
substances resulted in good models with residuals following normal distribution. Detailed reports on the scrutinized
models can be found in the Supporting Information (Data sheets 2‐4).

To select the best models, we decided to use the nonparametric SRD comparison, because of its robustness, no require-
ments for normal data distribution, but most importantly, because the 2 main criteria that we imposed on the selection of
the preferential models are easily implemented in the SRD. Namely, the first criterion was that the preferable training
model should provide the values (obtained from the predicted or the CV subsets) as close as possible to the reference input
data (the lowest SRD scores). The second condition imposes that such a model applied to the unknowns should result in
the predictions as close as possible to the consensus of the values defined by all compared models. Essentially, in a
consensus‐based comparison, the systematic and random errors associated with each model should be at least partially
eliminated, resulting in the consensus estimates that are better than any estimate based on a single model.

In the case of δd, the lowest SRD value was obtained for the ANN2 model followed by PLS and the rest of the ANN
models, if comparison is done with the known reference values. In a consensus‐based comparison of the unknowns, the
best ranked is PLS (Figure 2A), closely followed by ANN5, ANN3, ANN4, and ANN1. Therefore, the preferential values
of δd were calculated by the consensus of PLS and the ANNs.

In the case of a comparison of δh with the reference values, the best ranked model is ANN5, closely followed by the
rest of the ANN models. The consensus‐based comparison of the unknowns yields PLS as the best option, which is

FIGURE 2 Sum of ranking difference (SRD) ranking of models for prediction of Hansen's solubility parameters: (A) δd, (B) δp, and (C) δh;
the upper subplots correspond to comparison with the reference values; the lower subplots correspond to consensus ranking; normalized SRD

values (%) are on the x‐axis and left side y‐axis; right‐side y‐axis represents relative frequencies of random numbers (%)
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closely followed by ANN1 to ANN3 (Figure 2B). All of them are equally suitable, although ANN2 demonstrates a slightly
better statistical performance (Table 2), and therefore, it was selected as a preferable model.

In the case of δp, a comparison of SRD with the reference values points out to ANN1 to ANN4 as to the best models,
while the consensus‐based SRD of the unknowns identifies ANN1 and ANN3 at the second position (Figure 2C).
Considering slightly better performance parameters of ANN3 over the other ones (Table 2), this model was selected as
the preferential one.

In most cases, the RFs and BTs were ranked as the worst, while the general RTs demonstrated an intermediate to
low proficiency. Considering the small‐sized trees as slow learners, such outperformance of the general regression tress
over the boosted or random ensembles was not expected. The AutoQSAR models also resulted in the overall interme-
diate scores.

3.2 | Prediction of the absorption sites for target molecules based on the best estimates of
the Hansen's solubility parameters

The Hansen's solubility parameters have been calculated based on the best ranked models in the SRD comparison, as
described in section 3.1. The values are summarized in Table 3.

According to the BSC classification and following the Bagley's grouping criteria, all target compounds have been
assigned to Groups 2 and 3 (Figure 3). As described in the literature (BSC), ziprasidone14 and aripiprazole15 have the
absorption profiles of Group 2 (Class 2)7,16 as compounds characterized by traveling through GIT, which remains in
agreement with our prediction profile. Aripiprazole belongs to Group 3 as a compound that travels along an entire
GIT with the duration of the absorption process higher than 10 hours. However, ziprasidone and all of its impurities
are classified as the Group 2 members, ie, as the compounds readily absorbed from the upper parts of small intestine,
with the absorption lasting between 4 and 9 hours. All aripiprazole impurities, with an exception of Imp A4, belong
to Group 3.

TABLE 3 The estimates of Hansen's solubility parameters based on the best ranked models by the SRD comparison

No. Compound

Hansen's Solubility Parameter Bagley's Combined Volume Term
δd δp δh δv

1 Ziprasidone 21.61 6.04 8.54 22.43

2 Imp Z1 21.79 10.49 11.65 24.19

3 Imp Z2 22.22 6.09 8.82 23.04

4 Imp Z3 22.14 4.90 8.16 22.68

5 Imp Z4 21.49 10.49 8.80 23.91

6 Imp Z5 22.04 7.16 8.46 23.18

7 Imp Z6 22.35 10.37 8.59 24.64

8 Imp Z7 22.38 6.33 8.28 23.26

9 Imp Z8 21.65 6.21 9.87 22.52

10 Aripiprazole 20.94 5.43 10.04 21.63

11 Imp A1 20.76 8.64 9.30 22.49

12 Imp A2 20.84 7.40 10.29 22.12

13 Imp A3 20.85 7.53 10.03 22.17

14 Imp A4 22.04 7.83 14.16 23.39

15 Imp A5 21.12 4.25 10.35 21.54

16 Imp A6 20.97 4.99 8.77 21.56

17 Imp A7 20.68 4.70 9.29 21.21

18 Imp A8 20.97 6.55 8.99 21.97
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The pharmaceutical regulatory agencies such as the Food and Drug Administration and the European Medicines
Agency have raised the concerns regarding the presence of genotoxic impurities in the APIs that could exert a negative
impact on human health. The term “genotoxicity” covers a wider range of genetic damages, regardless if such damage is
or is not corrected through the cell DNA‐repairing mechanism.33 It is worth mentioning that the ziprasidone impurity,
Imp Z4, possesses genotoxic potential due to the presence of an alkylating group (ethyl chloride).34 From the absorption
prediction model developed in this study, it comes out that the absorption of Imp Z4 takes place in small intestine and it
lasts between 4 and 9 hours.

4 | CONCLUSION

Modeling of the Hansen's solubility parameters by linear and nonlinear approaches resulted in the well‐established PLS
and the artificial neural networks (ANNs) models. In the SRD comparison, the ANN and the PLS models scored the best,
while RTs, BTs, and RFs performed significantly worse. The AutoQSAR, a new machine learning module available from
the Schrödinger LLC, demonstrated an intermediate performance. Based on the Hansen's parameters predicted from the
best scored models, the most probable absorption sites for each drug and a corresponding degradation product were
estimated. While aripiprazole and all its impurities with an exception of one are absorbed along an entire length of
the GIT, ziprasidone and all ziprasidone impurities are predicted to be absorbed in an upper part of small intestine.
Statistical performance of the best ranked models proved to remain in agreement with similar models based on the
quantum‐mechanical DFT computations and the ANN modeling.
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