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Several NADH model compounds, N-alkyl-1,4-dihydronicotinamides, some
of them possessing amphiphilic properties, have been synthesized, and the kinetics of
their reaction with a biologically active liphophilic quinone, avarone, has been studied
in a protic solvent both in the presence and absence of cationic, anionic or non-ionic
surfactants. In the absence of micellar agents, the medium- and long-chain N-dodecyl
(3) and N-heptadecyl (4) derivatives show a significant increase in the reaction rates
compared to other model compounds, due to the stabilization of the semiquinone
intermediate. Anionic surfactants retard the reaction, non-ionic surfactants slightly
accelerate the reaction with the short-chain derivatives, and retard the reaction with
the medium- and long-chain derivatives, and the cationic surfactants increase the
reaction rate with all derivatives except the long-chain 4. The results support the e-p-e
mechanism of'the reduction of lipophilic quinones by NADH models in protic medium.
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The redox reactions of compounds containing a quinone/hydroquinone moiety
have been extensively examined! but still, for particular cases, simplified or
inconclusive presentations of the mechanism are occasionally offered. The ambi-
guities in the interpretation are usually related to cases in which it was experimen-
tally difficult to distinguish between stepwise proton-electron-proton transfers? and
one-step two-electron (hydride transfer) processes.> Consequently, effective ex-
trapolations of the results of chemical experiments to biological systems is ham-
pered both by the complexity of these systems and an apparent susceptibility of the
reaction course of structurally different quinoid compounds to the reaction condi-
tions.*> Nevertheless, the established importance of pyridine nucleotide coenzymes
in enzymatic redox reactions prompted the investigation of the mechanism of the
oxidation of NADH and related compounds as electron donors with simple qui-
nones. The currently growing interest for this reaction is also instigated by the fact
that many physiologically active compounds of natural or synthetic origin contain
quinoid moieties in a redox equilibrium.
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Fig. 1. The sesquiterpenoid hydroquinone/quinone couple, avarol and avarone

For some of quinoid compounds it has been well established that they undergo
direct nucleophilic addition in a biological medium; for others, particularly those with
lipid properties, redox activation in the cell membranes seems to be the crucial step for
the subsequent reaction sequence. One such redox couple, the sesquiterpenes avarol
and avarone® (Fig. 1), has ween the subject of intensive investigation by several
groups.’8 This work was initiated by our finding of the pronounced antitumor activity
of this redox couple.? On the basis of complementary investigations, we have suggested
that this couple undergoes reversible, one electron transfer with the formation of
quinone radical anions which, in reaction with molecular oxygen, produce superoxide
radicals, the species responsible for the observed bioactivity.|%!! This proposal was
substantiated by kinetic experiments on the oxidation of BNAH with avarone and a
series of structurally related quinones in different protic and non-protic solvents.!2 Since
the avarol/avarone redox couple has lipid propertics, it is quite likely that in living cells,
the redox activation of this couple takes place in biological membranes. Therefore, to
approximate biological conditions, kinetic and clectrochemical experiments were
carried out in cationic, anionic and neutral micellar systems, yielding results which
confirmed the formation of the proposed quinone anion radical intermediate in the
oxidation of BNAH. 1213

In this work, this approach was extended by following the course of the
reduction of avarone with N-alkyl-1,4-dihydronicotinamide derivatives of different
chain length, some of them possessing amphiphilic properties, in a protic solvent,
both in the presence and absence of surfactans. These amphiphilic compounds can
be considered as good NADH models since no significant change in the redox
potential, resulting from differences in the alkyl chain length, has been observed. !4

RESULTS AND DISCUSSION
In this work, four alkyl derivatives, N-butyl(1), N-octyl(2), N-dodecyl(3) and
N-heptadecyl-1,4-dihydronicotinamide (4) (Fig. 2) were synthesized by alkylation
of nicotinamide and subsequent sodium dithionite reduction of the N-alkyl-3-car-
bamoylpyridinium halide (Scheme 1).
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Fig. 2. Synthesized derivatives of 1,4-dihydronicotinamide

The reaction rates for the reduction of avarone by the NADH models were
determined in a protic polar solvent (HyO : EtOH, 1:1, v/v), both in the presence and
absence of surfactants (SDS, CTAB, Tween 80). The solution was buffered with 0.02M
sodium phosphate buffer solution (pH 6.98). The concentration of both reactants was
1x10~* M. The reaction was carried out under an inert atmosphere (argon, <3 ppm O5).
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Scheme 1.

The reaction rates were followed by monitoring the changes in the UV
absorption at A=350 nm (characteristic absorption maximum for the 1,4-dihydroni-
cotinamide functionality).

The results are given in Table I, as relative second order rate constants in regard
to the rate constant of the reaction of BNAH with avarone (,4=0.67 mol~! dm? s71).

In the absence of micellar agents, the rate of the lipophilic quinone avarone
reduction by the NADH model compounds depends on the number of carbon atoms
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Fig. 3. The relative reaction rate constants of the reduction of avarone by various NADH deriva-
tives in ethanol-water 1:1 (v/v), pH 6.98, with and without surfactants. The relative reaction rate
constants were calculated with respect to the rate of reaction in the absence of surfactant for a par-
ticular derivative.

in the N-alkyl chain. The reaction was slowest with the N-butyl derivative, and
fastest with the N-heptadecyl derivative. The significant increase in the reaction rate
with the N-dodecyl and the N-heptadecyl derivatives is in accordance with our
previously proposed mechanism. ! As step I (Scheme 2) is the rate determinig step,
the formation of a tightly bound ion pair in step II, stabilized by both ionic and
hydrophobic interactions, should result in an increase in the reaction rate with
increasing alkyl chain length of the derivatives. In this respect, the long-chain
N-alkyl derivatives are taking on the role of CTA*, which accelerates the reaction
of avarone with the NADH model compounds by stabilizing the semiquinone
intermediate. However, they are even more effective, since they directly participate
in the formation of the ion pair in step II, and also by increasing the local
concentrations of the reacting species. In the proposed e-p-e mechanism, steps 111,
IV and 'V are very fast, so that additional acceleration of these steps has no significant
effect on the total reaction rate.

The effect of surfactants on the reaction rates is shown is Table I and Fig. 3.
In Fig. 3, for each NADH model compound, the reaction rate without added
surfactant is taken as unity and the rates in the presence of a surfactant are given
relative to it. As expected, the anionic surfactant SDS deccelerates the reaction, due
to the destabilization of the semiquinone intermediates. The nonionic surfactant
Tween 80 slightly accelerates the reaction with BNAH and the N-butyl derivative
by bringing together the reacting species, but decreases the reaction rate with the
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medium- and long-chain derivatives, probably due to their automicellization, so that
there is a concurrent distribution of the lipophilic quinone between the Tween 80
micelles, and the micelles of the lipophilic NADH model. In this way, the effective
concentration of the quinone is lowered, resulting in a decrease in the reaction rate.
As expected, this effect is most pronounced with the N-heptadecyl derivative. The
cationic surfactant CTAB accelerates the reaction with BNAH and short- and
medium-chain N-butyl, N-octyl and N-dodecyl derivatives by stabilization of the
semiquinone intermediate. However, the reaction of the N-heptadecyl derivative is
deccelerated in the presence of the cationic surfactant. In addition, there is a strong
acceleration of the reaction in the presence of CTAB, compared to the reaction in
the presence of Tween 80 for all the NADH models except the N-heptadecyl
derivative. The reason for the different behaviour of the short- and medium-chain
derivatives vs. the long-chain N-heptadecyl derivative might lie in the difference in
their solubilization in CTAB micelles. Namely, electrochemical studies have shown
that BNAH is not solubilized in CTAB micelles.!3 On the other hand, kinetic studies
indicate that the uncharged NADH model 1-hexadecyl-4-cyano-1,4-dihydronicotin-
amide is well solubilized in CTAB micelles, contrary to the positively charged
oxidized froms.! Thus, different effects of CTAB can be observed depending on
the solubilization of the NADH derivative in the micelle. Since avarone is solu-
bilized in CTAB micelles, then, if there is no solubilization of the NADH derivative,
an increase of the reaction rate is expected, due to the stabilization of the semiqui-
none derivative, assuming that the reaction takes place in the Stern region of the
micelle. Such an effect is observed with BNAH and the short- and medium-chain
derivatives. On the other hand, if the NADH model is solubilized in the CTAB

TABLE L. The relative reaction rate constants of reduction of avarone by various NADH derivatives
in ethanol-water: 1:1 (v/v), pH 6.98, with and without surfactants

Type and conc. of N-alkyl-1,4-dihydronicotinamide

surfactant
M) BNAH 1 2 3 4
0 1.00 0.79 1.08 2.02 2.62
SDS, 1.5x107 0.92 0.73 0.97 1.85 2.19
Tween 80, 1.5%x1073 1.05 0.81 1.02 1.98 2.18

CTAB, 1.5x107 1.45 1.06 1.37 2.54 231
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micelles, as expected for the N-heptadecyl derivative, then the positively charged
one-clectron oxidation product (radical cation) would be destabilized in the posi-
tively charged micelle, resulting in a decrease in the reaction rate.

Our results support the e-p-e mechanism of the reduction of lipophilic qui-
nones by BNAH and its derivatives in a protic medium. However, the hydride
two-electron reduction mechanism cannot be excluded in reactions of less lipophilic
quinones and under different reaction conditions.

EXPERIMENTAL

Physical measurements

'H-NMR spectra were recorded on a Varian FT-80A instrument using TMS as an internal
standard; UV/VIS spectra were recoreded on a Beckman D-25 spectrophotometer; melting points were
determined in a Thiele apparatus and are uncorrected; molar absorption coefficient and Amax were
determined in ethanol-water mixture at pH 6.98, using 1x10™* M concentrations.

Avarol was isolated'® from the marine sponge Dysidea avara and avarone was obtained by
oxidation of avarol with silver(I) oxide as described carlier.®

1-Benzyl-3-carbamoylpyridinium chloride: 0.6 g of nicotinamide and 1.0 g of benzyIchloride
(Fluka) were refluxed in 12 ml of MeOH. A fter 3 h the MeOH was partially evaporated and the solution
was left in a cold place for the quaternary ammonium salt to crystallize. After filtration, the crude
product (1.2 g) was recrystallized from MeOH. The yield of white 1-benzyl-3-carbamoyl-pyridinium
chloride was 0.9 g, (74%), m.p.220 °C; microanalysis: calcd. for C13H13CIN2O: C 62.78%, H 5.27%,
N 11.26%; found: C 62.05%, H 5.45%, N 11.68%.

N-alkyl derivatives of nicotinamide (general procedure): 10 mmol of nicotinamide was dis-
solved in 15 ml of 1-pentanol and a solution of 12 mmol of the n-alkyl halide in 1-pentanol was added.
The mixture was refluxed for 3-4 h. After cooling the product solidified and occluded almost all of the
solvent. The content of the flask was transferred onto a Biichner funnel, filtered and washed with a
small amount of cold 1-pentanol and light petroleum. The crystals were dried for several hours in
vacuo at 60 °C. Dried salt was used for subsequent reduction without the need for additional
purification. The derivatives obtained by this procedure are:

1-Butyl-3-carbamoylpyridinium bromide: yield 80.5%, m.p. >220 °C, microanalysis: calcd. for
C10H15BrN20: C 46.35%, H 5.83%, N 10.81%; found: C 46.36%, H 5.99%, N 10.71%.

1-Octyl-3-carbamoylpyridinium bromide: yield 65.7%, m.p.>220 °C, microanalysis: calcd. for
C14H23BrN2O: C 53.34%, H 7.35%, N 8.89%; found: C 52.76%, H 7.17%, N 9.44%.

1-Dodecyl-3-carbamoylpyridinium bromide. yield 68.2%, m.p.> 220 °C, microanalysis: calcd.
for C18H31BrN20: C 58.22%, H 8.41%, N 7.54%; found: C 58.77%, H 8.48%, N 7.64%.

1-Heptadecyl-3-carbamoylpyridinium bromide: yield 60.3%, m.p. >220 °C, microanalysis:
caled. for C23H41BrN20: C 62.57%, H 9.36%, N 6.35%; found: C 61.95%, H 9.36%, N 6.42%.

The reduction of the quaternary ammonium salts was carried out according to the classical
Westheimer procedure.l

N-butyl-1,4-dihydronicotinamide: 5 mmol of 1-butyl-3-carbamoylpyridinium bromide dis-
solved in 10 ml of water was added dropwise into a mixture of 1.38 g anhydrous Na,CO3z and 2.61 g
fresh Na2S204 (Fluka, 85%) in 15 ml of water at 40°-50 °C. After 10—12 min the oily yellowish dihydro
derivative separates. The reaction mixture was allowed to cool for 5 min and then extracted with CHCls.
The extract was washed with water, dried over anh. NapCO3, and the CHCl3 evaporated. After
recrystallisation from ethanol and drying in a vacuum desiccator over P2Os, 65% of the yellow
dihydroderivative was obtained; m.p. 135 °C (decomp.); Amax 352 nm; €350 6720; lH-NMR (CDCl3):
07.35(1H, s), 7.00 (1H, s), 5.68 (2H, m), 4.70 (1H, m), 3.10 (2H, {), 1.03 (4H, s), 0.90 (3H,?).
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N-Alkyl derivatives of 1,4-dihydronicotinamide (general procedure): 5 mmol of the quaternary
ammonium salt dissolved in 10 ml of solvent was added dropwise into a mixture of 1.38 g anhydrous
NaxCO3 and 2.61 g fresh NaxS>04 (Fluka, 85%), in 15 ml of solvent kept at 40-50 °C. After 10-12
min, the yellow dihydro derivative separates. The reaction mixture was allowed to cool for 5 min and
then the solid product was filtered, washed with cold water, recrystallized from ethanol, dried in
vacuum desiccator over P2Os and used immediately. The derivatives obtained by this procedure are:

N-Benzyl-1,4-dihydronicotinamide: solvent: water; yield 61%; m.p. 110 °C (decomp.); Amax
354 nm; €350 6950; 'H-NMR (CDC13): 87.12 (5H, m), 5.70 (1H, d), 5.25 (1H, s), 4.70 (1H, m), 4.20
(2H,s), 3.10 (2H, s).

N-Octyl-1,4-dihiydronicotinamide: solvent: water-ecthanol (9:1); yield 70%; m.p. 120 °C (de-
comp.); Amax 352 nm; €350 6812; "H-NMR (CDCl3): 6 7.31 (1H, ), 7.00 (1H, s), 5.67 (2H, m), 4.62
(1H, m), 3.09 (2H, ¢), 1.26 (12H, s), 0.90 (3H, 7).

N-Dodecyl-1,4-dihydronicotinamide: solvent: water-ethanol (9:1); yield 81%; m.p. 100 °C
(decomp.); Amax 350 nm; €350 6834; 'H-NMR (CDCl3): & 7.26 (1H, s), 7.03 (1H, d), 5.72 (2H, m),
5,23 (2H, s), 4.72 (1H, g), 3.08 (2H, ), 1.25 (20H, s5), 0.90 (3H, 7).

N-Heptadecyl-1,4-dihydronicotinamide: solvent: water-cthanol (9:1); yield 62%; m.p. 94 °C
(decomp.); Amax 354 nm; €350 6806 'H-NMR (CDCl3): 87.21 (1H, s), 7.00 (1H, d), 5.78 (2H, m), 5.30
(2H, s), 4.68 (1H, m), 3.10 (2H, ¢), 1.20 (30H, s), 0.90 (3H, 7).

Determination of the reaction rates. The reduction reactions of avarone by the dihydronicotinamide
derivatives were performed in quartz cells with hermetic Teflon stoppers. The concentrations of avarone
and 1,4-dihydronicotinamide derivatives were 1.00 x 10", M. The solutions were made in ethanol-water
1:1 (v/v) with 0.02 M sodium phosphate buffer pH 6.98. The CTAB, SDS and Tween 80 surfactants were
commercial products (Serva) and were used in 1.50 X 10 M concentrations. All solutions were purged
with argon (< 3 ppm O2) prior to use and all work was doen under an argon atmosphere. The reactions were
monitored on a Beckman D-25 spectrophotometer, using the change in absorption at A=350 nm (charac-
teristic absorption maximum for the 1,4-dihydronicotinamide functionality).
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KUHETUKA PEANYKUWIJE JIMITO®UIHOI' XM HOHA ABAPOHA N-AJIKWJI-1.4-11-
XUJIPOHUKOTUHAMUWINMA PA3JIMYUTE JIMTTOOPUITHOCTHU

MAPHO 3JIIATOBUH, IYIWAH CIAJTWHR n MUPOCJIAB J. TALIMR
Xemujcku paxyaitieini, Citiyoeniticku itipz 14, Beozpao u Ilenitiap 3a xemujy UXTM-a, Ibezowesa 12, Beozpao

Cunrerucano je Hekoauko N-ankmi-14-JuxXupOHUKOTUHAMHI/IA, MOJICII-jCUbCHA
NADH, on xojux Heku umajy amcuduine ocoOHHE, I NPOYyYaBaHA j€ KUHETUKA HHUXOBE
peakuuje ca OHMOJIOIIKUM AKTHBHHM, JUNO(MUIHIM XWHOHOM aBAPOHOM Yy NPOTHYHOM
pacrBapady y NpUCyCTBY KaTjOHCKHX, aHJOHCKUX WM HEJOHCKHUX MOBPUIMHCKY aKTUBHUX CYII-
cTaHIW U 6e3 BuX. be3s fogatux MunenapHux aresaca, N-fofenui-iepuBar 3 (JepuBaT cpefibe
AyKUHEe HU3a) U fyroiandanu N-xenrafieui-epuBar 4 moka3syjy 3HauajHo noBehame Op3une
peakimje y nopebemy ca IpyruM MOfien-jeIuhelhAMa, YCIIe]] CTa0ImTn3anije CEMIXHHOHCKIAX
mHTEepMennjepa. AHjOHCKA MOBPIIMHCKA aKTWBHU areHCH YCIOpaBajy peakiyjy, HEjOHCKH
areHcu I0BOJiE JI0 crador yop3ama ca iepuBaTUMa KpaTKOT alIKIII-HA34, a YCIOpaBajy peak-
Iy ca AI€pUBATHAMA CPEAET U JYTOT HI34, JOK KAaTjOHCKH areHCH yOp3aBajy PeaKiiyjy ca CBUM
jepuBaTmMa, ceM ca ayrojaHuaHuMm 4. PesynraTé ykasyjy Ha MexaHU3aM €-P-€ pefyKuuje
manodunHuxX XuHOHA MoaenuMa NADH y npotuaHoM Megujymy.

(ITpumsbeno 16. mapra 1999).
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