25th Symposium on Environmental Chemistry Abstracts

Dates: 8th - 10th June 2016
Venue: TOKI MESSE Niigata Convention Center

In cooperation with
Society of Environmental Toxicology and Chemistry, Japan
Royal Society of Chemistry Japan
Niigata University of Pharmacy and Applied Life Sciences, Faculty of Applied Life Sciences

Organized by Japan Society for Environmental Chemistry
Humic acids generation during bioremediation of petroleum pollution in soil substrates

Jelena Avdalović¹, Aleksandra Đurić², Srđan Miletić¹, Jelena Milić¹, Mila Ilić¹, Gordana Gojgić Cvijović¹, Takeshi Nakano³, Vladimir Beškoski², Miroslav M. Vrvić²

¹Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Serbia, ²Faculty of Chemistry, University of Belgrade, Serbia, ³Kobe University, National Institute for Environmental Studies

[Introduction]

The advance of technology and industry in the last hundred years, population growth and the development of big cities have led to the production of waste materials in quantities which exceed self-purification capacity of nature. The accumulation of waste materials of various origin causes increased pollution of the environment, including soil. Nondegradable waste materials degrade soil and disrupt normal soil processes, which has negative effects on the ecosystem and human health.

Petroleum and its derivatives are one of the major and most dangerous pollutants of soil. Pollution by petroleum and petroleum derivatives is caused by its exploitation, processing, transport, storage and use, but also by accidental spills. Bioremediation is a method of reducing petroleum pollution which has been widely used in the last years.

Bioremediation is a process which is based on the natural capacity of microorganisms to degrade or transform toxic substances from the environment into harmless products. Bioremediation technologies are in harmony with the principles of sustainable development since waste materials are not generated, and the treated soil can recover its natural biological activity.

[Methods]

The aim of this paper is to study the use of different microorganisms as “biological agents” through processes which are of crucial importance for soil formation. The process includes the study of an active consortium of zymogenous microorganisms for ex situ bioremediation of a complex petroleum contaminant in soil substrate, along with simultaneous monitoring of the humification process.

[Results and discussion]

In the studies based on simultaneous bioremediation and humification, which lasted for 6 months, 150 m³ of soil contaminated by various petroleum derivatives was treated by ex situ bioremediation. Results are shown in the following tables.
The total petroleum hydrocarbons (TPH) content was reduced from the initial 30 to 2.2 g/kg, while the content of humic acids increased by 47%. The analysis of humic acids from the studied samples showed that the structure of humic acids changed during bioremediation.

[Acknowledgement]

This research is a part of project III 43004 funded by the Ministry of Education, Science and Technological Development of Republic of Serbia and JICA project “Capacity Building For Analysis And Reduction Measures Of Persistent Organic Pollutants In Serbia”

[References]