Table of Contents

Welcome .. 2
Committees ... 3
General Information 4
Information for Presenters 7
Daily Poster Topics and Board Numbers 8
CME/CPD Accreditation 9
Networking Events 12
Venue Floorplans 13
Timetable at a Glance 14

Scientific Program

Thursday, March 17 17
Friday, March 18 .. 25
Saturday, March 19 33

Posters

Friday, March 18 .. 47
Saturday, March 19 71

Index

... 93

Recognition, Acknowledgements and Commercial Support

Acknowledgements 113
Satellite Symposia 115
Exhibition Map .. 120
Exhibitors List .. 121
Sponsor and Exhibitor Profiles 122
Committees

Chairpersons and Organizing Committee
Moshe Phillip, Israel
Raanan Shamir, Israel
Dominique Turck, France

Advisory Board
Carlo Agostoni, Italy
Faisal Ahmed, UK
Christophe Dupont, France
Mary Fewtrell, UK
Kim Fleischer Michaelsen, Denmark
Almuthe Hauer, Austria
Gabrielle Hausler, Australia
Jan Lebl, Czech Republic
Andrew Prentice, UK
Lars Savendahl, Sweden
Virginia Stallings, USA
Hania Szajewska, Poland
Hans Van Goudoever, The Netherlands
Jan-Maarten Wit, The Netherlands
General Information

Conference Venue
Reed Messe Wien GmbH
Congress Center
Messeplatz 1
Vienna, Austria
T: +43 1 727 20-0
F: +43 1 727 20-2359
E: congress@messe.at

Language
English is the official language of the Conference.

Registration
Desks will operate as follows:
Thursday, March 17 10:00 – 20:15
Friday, March 18 07:30 - 19:15
Saturday, March 19 07:30 - 16:45

Name Badge
Upon registration you will receive your name badge. Please wear your badge during the Conference in order to access the session halls and Exhibition Area.

Clothing
Attire, throughout the Conference, is casual and informal.

Mobile Application
Install the N&G 2016 interactive Mobile App on your smartphone and portable devices to access all of the information you could need during and after the Conference.
• See the overview of sessions, speakers and exhibitors
• Create your own program for the event, including bookmarking the sessions you wish to attend
• Receive real-time updates
Download the N&G 2016 App now to enhance your Conference experience!
(Available on the App Store or Google Play.)
Background and Aims
Health benefits of mother’s milk depend on the level of the total antioxidant capacity (TAC). In mother’s milk, the TAC should refer to the sum of activities derived from active enzymatic antioxidant systems (e.g. superoxide dismutase, catalase, glutathione peroxidase etc.), non-enzymatic antioxidants, such as vitamins C and E, and the presence of other bioactive factors (e.g. lactoferrin, uric acid etc.). Measuring oxidation-reduction potential (ORP) using RedoxSYS Analyzer may be an alternative to classic methods of measuring TAC.

We compared the results of OPR and ascorbic acid content in milk from mothers of preterm infants.

Method
Milk was obtained from ten mothers of preterm infants (gestational age 28-36 weeks; birth weight 900-2,470 g). Milk samples were obtained within the first 4 days after delivery (colostrum), from day 4 to two weeks (transient), and 6 weeks and later (mature milk). Static oxidation–reduction potential (ORP) of milk from mothers of preterm infants was measured using RedoxSYS Analyzer (Luoxis Diagnostics, Englewood, CO). Ascorbic acid content was measured in milk samples and results were expressed as mg/l. Procedure suggested by the manufacturer was used (Reflect quant® ascorbic acid test for reflectometerRQflex®, Merck KGaA, Germany, 2006).

Results
There are similarities in the results of OPR and vitamin C concentration in colostrum, transient and mature milk from mothers of preterm infants.

Conclusion
Vitamin C concentration influenced the value of OPR most.

This work was supported by Grants 173014 and 43004 by the Ministry of Education, Science and Technological Development of the Republic of Serbia.
OXIDATION-REDUCTION POTENTIAL IN THE MILK FROM MOTHERS OF PRETERM INFANTS

S. Spasić1*, S. Miletić1, S. Minić2, N. Lugonja1, V. Marinković3, I. Spasojević4, M.M.Vrvić2

1Institute of Chemistry, Technology and Metallurgy, Belgrade, Serbia
2Faculty of Chemistry, University of Belgrade, Serbia
3Neonatology Department, University Children’s Hospital, Belgrade
4Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia

Results and conclusion
There are similarities in the results of OPR and vitamin C concentration in colostrum, transient and mature milk from mothers of preterm infants. Vitamin C concentration influenced the value of OPR most.

Health benefits of mother’s milk depend on the level of the total antioxidant capacity (TAC). In mother’s milk, the TAC should refer to the sum of activities derived from active enzymatic antioxidant systems (e.g. superoxide dismutase, catalase, glutathione peroxidase etc.), non-enzymatic antioxidants, such as vitamins C and E, and the presence of other bioactive factors (e.g. lactoferrin, uric acid etc.). Measuring oxidation-reduction potential (ORP) using RedoxSYS Analyzer may be an alternative to classic methods of measuring TAC.

Aim
We compared the results of OPR and ascorbic acid content in milk from mothers of preterm infants.

Methods
Milk was obtained from ten mothers of preterm infants (gestational age 28-36 weeks; birth weight 900-2,470 g). Milk samples were obtained within the first 4 days after delivery (colostrum), from day 4 to two weeks (transient), and 6 weeks and later (mature milk). Static potential (ORP) of milk from mothers of preterm infants was measured using RedoxSYS Analyzer (Luoxis Diagnostics, Englewood, CO). Ascorbic acid content was measured in milk samples and results were expressed as mg/l. Procedure suggested by the manufacturer was used (Reflect quant® ascorbic acid test for reflectometerRQflex®, Merck KGaA, Germany, 2006).

Results and conclusion
There are similarities in the results of OPR and vitamin C concentration in colostrum, transient and mature milk from mothers of preterm infants. Vitamin C concentration influenced the value of OPR most.

Health benefits of mother’s milk depend on the level of the total antioxidant capacity (TAC). In mother’s milk, the TAC should refer to the sum of activities derived from active enzymatic antioxidant systems (e.g. superoxide dismutase, catalase, glutathione peroxidase etc.), non-enzymatic antioxidants, such as vitamins C and E, and the presence of other bioactive factors (e.g. lactoferrin, uric acid etc.). Measuring oxidation-reduction potential (ORP) using RedoxSYS Analyzer may be an alternative to classic methods of measuring TAC.

Aim
We compared the results of OPR and ascorbic acid content in milk from mothers of preterm infants.

Methods
Milk was obtained from ten mothers of preterm infants (gestational age 28-36 weeks; birth weight 900-2,470 g). Milk samples were obtained within the first 4 days after delivery (colostrum), from day 4 to two weeks (transient), and 6 weeks and later (mature milk). Static potential (ORP) of milk from mothers of preterm infants was measured using RedoxSYS Analyzer (Luoxis Diagnostics, Englewood, CO). Ascorbic acid content was measured in milk samples and results were expressed as mg/l. Procedure suggested by the manufacturer was used (Reflect quant® ascorbic acid test for reflectometerRQflex®, Merck KGaA, Germany, 2006).

Results and conclusion
There are similarities in the results of OPR and vitamin C concentration in colostrum, transient and mature milk from mothers of preterm infants. Vitamin C concentration influenced the value of OPR most.